Course Syllabus

Advanced Topics & AP Biology Syllabus

 

Course Design: This course is for students desiring a first year college-level biology course.  AP Biology is taken in high school as a second year course. AP biology meets every day for 90 minutes for two semesters.   

Objectives and Skills: 

  • To develop reasoning skills so that students can grasp science as a process rather than an accumulation of facts.
  • Use inquiry-based learning to explore essential concepts and gain understanding of scientific processes.
  • Learn to collaborate with others both in and outside of class. 
  • Realize that studying is a daily process and must never be put off until the last minute.

 

AP Exam

Students are expected to take the AP exam. The exam will be on May 14th 2018.  The exam is scored on a scale of 5 to 1, five being the highest score and three is considered passing. In the days after the exam, students will be engaged in science research and projects and will make their presentations on the scheduled exam day.

The Laboratory Component

Laboratory assignments offer the opportunity for students to learn about problem solving, the scientific method, the techniques of research, collaborating with a group, and the use of scientific literature. You will be expected to read and study the lab and be completely prepared before the lab is to begin. Being prepared means that you may need to complete a Pre-Lab Assessment assignment and that you will bring questions with you to class that you discover while reading the lab material.  In addition, you will complete lab reports in using Student Lab Notebook unless specified otherwise. 

Classroom supplies: Students will need a 1.5" binder, notebook paper, a calculator and tab dividers. 

Grading: Grading policy will be similar to the AP grading. Tests and quizzes are weighted heavily and will similar to AP style questions. Parents can access grades on PowerSchool. Test grades will be updated within a week.

Tests: 60%

Quizzes 15%

Homework 10%

Lab: 15%

Tutoring Hours: Wednesday 3:30 - 4:15 pm

Assessments:  Students will have a quiz at the end of each chapter. Lab reports will be graded at the end of each lab. Students are responsible to complete chapter notes for each chapter covered in class. The chapter reading guide is available on Canvas. All answers to the reading guide questions must be hand-written.

Make up work: Students should submit work on time. Work submitted late will be accepted for 80% of the grade within the grading period. Any missing tests or quizzes must be made up within 3 days of the absence. Please contact me if you have an extended absence and cannot take a quiz or test.

Classroom Expectations: Students must actively participate in class activities and take notes during lectures. Students must keep their notebooks organized and complete assignments in a timely manner. Students must follow all lab safety rules and are expected to be in lab attire during lab activities. Students who fail to follow lab procedures will get zero for the lab activity.

Online learning Platform: Students are expected to make use of many learning resources available on Canvas. Class presentations, lectures, study guides and reading assignments are posted on Canvas. 

 

Course Topic Outline

Science Practices: 

  • The student can use representations and models to communicate scientific phenomena and solve scientific problems.
  • The student can use mathematics appropriately.
  • The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course.
  • The student can plan and implement data collection strategies appropriate to a particular scientific question.
  • The student can perform data analysis and evaluation of evidence.
  • The student can work with scientific explanations and theories.
  • The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains.

 

AP Biology Syllabus                       

Curricular Requirements

aPage(s)

CR1 Students and teachers use a recently published (within the last 10 years) college-level biology textbook.

3

CR2 The course is structured around the enduring understandings within the big ideas as described in the AP® Biology Curriculum Framework.

2, 3, 5, 6, 7, 8, 9

CR3a Students connect the enduring understandings within Big Idea 1 (the process of evolution drives the diversity and unity of life) to at least one other big idea.

4, 6,  7, 8

CR3b Students connect the enduring understandings within Big Idea 2 (biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis) to at least one other big idea.

4, 5, 9

CR3c Students connect the enduring understandings within Big Idea 3 (living systems store, retrieve, transmit, and respond to information essential to life processes) to at least one other big idea.

5, 8

CR3d Students connect the enduring understandings within Big Idea 4 (biological systems interact and these systems and their interactions possess complex properties) to at least one other big idea.

5, 6, 7, 8, 9

CR4a The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea 1

4, 5, 6, 7

CR4b The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea 2.

4, 5

CR4c The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea 3.

8

CR4d The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea 4.

4, 6, 9

CR5 The course provides students with opportunities to connect their biological and scientific knowledge to major social issues (e.g., concerns, technological advances, innovations) to help them become scientifically literate citizens.

4, 5, 6, 7, 8, 9

CR6 The student-directed laboratory investigations used throughout the course allow students to apply the seven science practices defined in the AP Biology Curriculum Framework and include at least two lab experiences in each of the four big ideas.

4, 5, 6, 7, 8, 9

CR7 Students are provided the opportunity to engage in investigative laboratory work integrated throughout the course for a minimum of 25 percent of instructional time.

2

CR8 The course provides opportunities for students to develop and record evidence of their verbal, written and graphic communication skills through laboratory reports, summaries of literature or scientific investigations, and oral, written, or graphic presentations.

2 , 3

 

 

 Course Overview

 

Advanced Placement Biology is part of a nationwide program based on the belief that many students are ready for college work while still in high school, and their abilities should be recognized, encouraged and rewarded. As a college level course, the amount of material covered as well as the complexity of the topics will be high. It is the responsibility of the student to come to class each day understanding the previous day's material. An ongoing unstated assignment, therefore, is to learn the material as it is presented. Students must be certain that they are willing to accept this challenge and be committed to keep up with the work.

AP Biology is structured around four Big ideas described in the Curriculum Framework, which encompass the core scientific principles, theories, and processes governing living organisms and biological systems. At least one of the Big ideas will be incorporated in every lesson throughout the course. [CR2] 

The four Big ideas are:

 

Big idea 1: The process of evolution drives the diversity and unity of life.

Big idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis.

Big idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes.

Big idea 4: Biological systems interact, and these systems and their interactions possess complex properties.

 

Class discussions may be based on animations from various sources (textbook, CDs, Internet, etc.) to help the students visualize what they have read. Quizzes are interspersed throughout the unit and inform how instruction may need to be adjusted to improve student learning.  Online quizzes, administered through edmodo can help students self evaluate their progress.  Lectures may be provided online in some cases, units may be “flipped”  so that more class time can be devoted to laboratory and discussion.

 

The two main goals of AP Biology are to help students develop a conceptual framework for modern biology and to help students gain an appreciation of science as a process. The ongoing information explosion in biology makes these goals even more challenging. Students are encouraged to focus on understanding important relationships, processes, mechanisms, and potential extensions and applications of concepts. The course provides opportunities to connect scientific knowledge to major social issues to help students become scientifically literate citizens. [ CR 5 ]

Technology is used extensively throughout the course, and students are required to participate in asynchronous discussions, development of an online portfolio, and develop other educational artifacts such as concept maps or webpages that illustrate their understanding of topics.   [ CR 8 ]

Hands-on labs will constitute at least 25% of instructional time [ CR 7 ].   Students will have the opportunity to complete at least two lab experiences in each of the four big ideas.  [CR 6 ] Many of these labs are inquiry based, and emphasize collaboration, development of hypotheses, data collection, analysis and presentation.  Students will maintain a laboratory notebook that documents their investigations throughout the year.  This notebook will be digitally formatted and stored online. In addition to the lab notebook, a final reflective essay will be required.    [ CR 8 ]

*Students are required to keep a lab notebook, and/ or  write short summaries of observations [CR8]

 

TEXTBOOK AND OTHER RESOURCES

Campbell Biology (9th Edition) –, October 7, 2010

by Jane B. Reece (Author), Lisa A. Urry (Author), Michael L. Cain (Author), Steven A. Wasserman

[ CR 1 ]

AP Biology Investigative Labs: An Inquiry-Based Approach, The College Board, 2012

Students may use addtional resources available through CATA's Media center.

Parents may use the EmpowerED portal for additional resources

Classroom website: https://sites.google.com/a/ucps.k12.nc.us/ap-biology-class/

 

 

COURSE SCHEDULE

 

Unit 1:  The Nature of Science and the Chemistry of Life  [ CR 2 ]    ~ 3 weeks

Readings:  Chapter 1, 2, 3, 6, 7, 8

Big Ideas and Enduring Understandings to be addressed  2.A, 3A; 4A, 4B

 

Big Idea 1 is tied to Big Idea 4 in this introductory unit, the complexity of life, properties of living organisms and how evolution is the unifying theory of biology

 

Overview of Lecture and Discussion Topics

 

Scientific method and experimental design
Explain what is meant by scientific theory

Practice with data collection, analysis, and presentation

Address problems in research, such as confirmation bias
Emphasis on evidence collecting, why evolution is considered a unifying theory

 

Chemistry of Life 

  • Identify basic elements of living organisms
  • Distinguish between inorganic and organic compounds
  • Describe water’s unique properties
  • Describe the structure of organic compounds
  • Understand the pH scale, redox reactions, and hydrolysis/condensation
  • Apply the laws of thermodynamics to biological systems
  • Explain how life maintains a high degree of organization
  • Investigate enzyme structure and function

 

Unit 1 Activities

 

  1. Design and conduct an experiment, create and revise hypotheses, organize data, present findings {SP}
  2. Lead class discussion on experimental design by explaining the design process and identifying controls and variables {SP}
    3. Conduct an experiment to determine the optimal pH and temperature of the enzyme catalase [ CR4d]
  3. Develop concept maps and diagrams comparing protostomes and deuterostomes to gain an understanding of how taxonomy helps manage the diversity of life [ CR 8 ]
  4. Participate in asynchronous discussion where students submit a recent news article for discussion on techniques used, and implications for science and society [ CR 5 ]
  5. Chromatography Lab [ CR 6 ]
  6. Introductory enzyme labs using pineapple and avaocado [ CR 6 ]
    8. Read excerpts from “Song of the Dodo”, class discussions, quiz and test based on the reading [ CR8 ] and [ CR4a]

 

 

Unit 2:  Cellular Processes  [CR2] ~ 4 weeks

Readings: Chapter 4, 5, 7, 8

Enduring understandings to be addressed: 1B-D; 2A,2B; 4A

 

Big Ideas:   Big Idea 2 is addressed in this unit and tied to Big Idea 1 with regard to the diversity of life

Big Idea 2 is also tied to big idea 4 in showing how complex processes maintain homeostasis

 

Overview of Lecture and Discussion Topics

 

Review basic cellular components, construct models comparing differences between prokaryote, eukaryote, animal, and plant cells

Explain the concept of selectively permeable as it applies to the cell membrane, distinguish between active and passive transport

Define homeostasis and illustrate how transport is used to maintain an internal environment 

Understand the process by which the cell theory was developed

Understand the Endosymbiosis theory and its connection to evolution [CR3A] and [CR3B]

Understand the role of photosynthesis and cellular respiration in maintaining homeostasis

 

Unit 2 Activities

 

  1. Diffusion and Osmosis Lab [CR6]
  2. Create cell models using post-it notes [CR4B]
  3. Microscopy Lab and Comparing Plant and Animal Cells [CR 6]
  4. Cellular Respiration Lab [CR 6]

     - Also connects Big Idea 2 to Big Idea 4 [CR3B] and [CR3D]

  1. Photosynthesis Lab [CR 6]
  2. Transpiration Lab - also connects Big Idea 2 to Big Idea 4 [CR3B] and [CR3D]
  3. Group Presentations on Membrane Transport
    *Learning Objective 2.11 Student constructs models connecting the movement of molecules across membranes, this is completed as a presentation to the class, where groups are assigned a type of transport [CR4B]
  4. Discussion of the Endosymbiosis Theory which includes a summary essay [CR3B] & [CR4B]

 

Unit 3:  Inheritance [CR 2] ~ 4 weeks

Big Ideas:  1, 2, 3, 4                                       Readings:  Chapters 10 - 18

Enduring Understandings

 

  1. A Heritable information provides for continuity of life
  2. B Expression of genetic information involves cellular and molecular mechanisms.
  3. C the processing of genetic information is imperfect and is a source of genetic variation.
  4. D Cells communicate by generating, transmitting and receiving chemical signals.
  5. C Naturally occurring diversity among and between components within biological systems affects interactions with the environment.

 

Overview of Lecture and Discussion Topics

  1. Mitosis and Meiosis, and the Cell Cycle
    2. What is cancer?
  2. Mendelian genetics (Law of Segregation, Independent Assortment, Dominance)
    4. Mathematical predictions (punnett squares) and Chi Square Analysis
    5. Chromosomal Patterns of Inheritance (sex linkage)
    6. Human Genetic Disorders

 

Activities

 

  1. Modeling of the cell cycle [CR4c]
  2. Microscope observations of mitosis and meiosis [CR 6]
    3. Fruit Fly Lab [CR 6]
    4.  Dihydric Corn with chi square analysis [CR 6]
    5.  Practice genetic problems [CR4c]
    6.  Hardy Weinberg Problem Set, survey of human traits  [ CR4c]
        - this also ties Big Idea 1,  enduring understanding 1.A to Big Idea 4 (interactions)  [CR3a ] and [CR3d]
    7.  Chromosome Simulation - using beads and pipe cleaners, demonstrate linkage groups and inheritance patterns [CR4c]
    8.  Genetic Disorders Presentation [CR4c]
    * Learning Objective 3.13:  The student is able to pose questions about ethical, social, or medical issues surrounding human genetic disorders.

 

Unit 4:  Molecular Genetics [CR 2] ~ 3 weeks

Big Ideas:   1, 2, 3, 4                           Readings:  Chapters 13-16

 

Enduring Understandings

 

  1. A Change in the genetic makeup of a population over time is evolution
  2. C Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.
  3. E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.
  4. A Heritable information provides for continuity of life.
  5. B Expression of genetic information involves cellular and molecular mechanisms.
  6. C the processing of genetic information is imperfect and is a source of genetic variation.
  7. A Interactions within biological systems lead to complex properties.

 

Overview of Lecture and Discussion Topics

 

  1. DNA is the genetic material (historical experiments, DNA structure and function, DNA replication)
  2. Flow of genetic information (genetic code, role of other polymers, transcription, translation)
  3. Mutations
  4. Gene expression (operon systems in prokaryotes, eukaryotic gene expression)
  5. Restriction enzymes, plasmids, transformation
  6. DNA technology (how gel electrophoresis works and applications of this technology) [CR5]
  7. Biotechnology: stem cells, synthetic biology, genetically modified foods [CR5]

 

Activities

  1. Recombinant DNA simulation [CR4c]
  2. Bacterial Transformation [CR6]

     - Also ties Big Idea 3 to Big Idea 1 [CR3A] and [CR3C]
3.  DNA Concept Map [CR4c]
4.  DNA Modeling, showing transcription and translation [CR4c]

  1. Gel Electrophoresis [CR 6]
    6. Class discussions on biotechnology, student lead discussions [CR5],

 

Unit 5: Genome Evolution [CR 2] ~ 4 weeks

Big Ideas:  1, 2, And 4       Reading Chapter: 15, 17

Enduring Understandings

 

  1. C: Life continues to evolve within a changing environment.
  2. B: Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments.
  3. B: Competition and cooperation are important aspects of biological systems.
  4. C: Naturally occurring diversity among and between components within biological systems affects interactions with the environment.

 

Overview of Lecture and Discussion Topics

  1. Anatomy of Bacteria
  2. Diseases caused by Viruses, Protists, and Bacteria
  3. Viral and Bacterial Evolution
  4. Vaccines & Antibiotics
  5. Social Issues in disease transmission [CR 5]

 

Activities

 

  1. Bacteria Lab with Gram Stains [CR6]
  2. Group Presentation on a Pathogen [CR 8] which includes final essay on emerging diseases, pathogens and their hosts. This connects Big Idea 4 (interactions) and enduring understanding 4.B (competition) to Big Idea 1 (evolution) [CR3d] and [CR3a]
    3.  HIV and Immunology, how to find a cure for a rapidly evolving virus [CR4a]
         - ties Big Idea 1 to Big Idea 4 [CR3d] and [CR3a]

 

 

Unit 6: Evolution and Phylogeny [CR2] ~ 3 weeks

Big ideas: 1, 3, and 4                      Readings: Chapters 19, 20, 21, 22, 23, 24, 25, 26, 27

 

Connected to enduring understandings:

 

  1. A Change in the genetic makeup of a population over time is evolution.
  2. B Organisms are linked by lines of descent from common ancestry.
  3. C Life continues to evolve within a changing environment.
  4. D The origin of living systems is explained by natural processes.
  5. A Heritable information provides for continuity of life.
  6. C The processing of genetic information is imperfect and is a source of genetic variation.

4.C Naturally occurring diversity among and between components within biological systems affects interactions with the environment

 

Overview of Lecture and Discussion Topics

 

  1. How natural selection serves as a mechanism for evolution
  2. Scientific evidence supporting evolution
  3. Hardy-Weinberg equilibrium
  4. Origin of Life; Fossil Records, Concepts of speciation
  5. Current events in evolution, resistance to antibiotics, pesticides, artificial selection

 

Activities

 

  1. Sex and the Single Guppy - laboratory simulation where students explore sexual selection
    -  ties Big Idea 1 to Big Idea 3 [CR3A] and [CR3C]
    2.  Evolution of Grabbers - simulation, mutations and selection strength

       -  ties Big Idea 1 to Big Idea 3, enduring understanding 3.C (genetic variation) to Big Idea 1 and 4
            [CR3A] and [CR3C]

  1. Discussion on how evolution relates to current science and biotechnology [ CR5]
         * Learning Objective 1.5 Student is able to connect evolutionary changes in a population over time to change in the environment but   obtaining news articles and providing a summary and leading a class discussion [CR4a]
  2. Concept map on evolution, showing the processes that lead to its establishment as a theory, using PBS videos “Darwin’s Dangerous Idea” and “What Darwin Never Knew”. [CR4a]
    5.  Construct a cladogram and phylogenetic tree [CR4a]
  3. Reconstruct a fossil record to further understand geologic time and extinction [CR4a]

 

 

 

Unit 7:  Plant Form and Function [CR 2] ~ 2 weeks Reading: 28- 32

[CR 2] ~ 2 weeks

  1. B Organisms are linked by lines of descent from common ancestry.
  2. A Growth, reproduction and maintenance of the organization of living systems require free energy and matter.
  3. C Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.
  4. D Growth and dynamic homeostasis of a biological system are influenced by changes in the system’s environment.
  5. E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.
  6. E Transmission of information results in changes within and between biological systems.
  7. A Interactions within biological systems lead to complex properties.

 

Overview of Lecture and Discussion Topics

  • Plant Structure and Growth
  • Resource acquisition, nutrition and transport
  • Reproduction and Domestication of Flowering Plants
  • Plant responses to internal and external signals

Activities:

  • Transpiration Lab
  • Artificial Selection
  • Growing plants in lab

 

 

Unit 7: Animal Form and Function [CR 2] ~ 2 weeks

Big Ideas:  1, 2, and 4                          Readings: Chapters 33 - 39

 

In this unit, comparative anatomy is strongly emphasized, and includes the dissection of a mammal, such as a rat to compare to human anatomy.  Big Idea 1 is tied to Big Idea 4 as comparative anatomy emphasizes the relationships between organisms and similarities that imply common descent.  [CR3A] and [CR3D]

 

  1. B Organisms are linked by lines of descent from common ancestry.
  2. A Growth, reproduction and maintenance of the organization of living systems require free energy and matter.
  3. C Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.
  4. D Growth and dynamic homeostasis of a biological system are influenced by changes in the system’s environment.
  5. E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.
  6. E Transmission of information results in changes within and between biological systems.
  7. A Interactions within biological systems lead to complex properties.

 

Overview of Lecture and Discussion Topics

 

  1. Feedback control loops in animals
  2. Thermoregulation in animals
  3. Energy allocation and use in animals
  4. Examples of functioning units in mammal systems (alveoli in lungs, nephrons in kidneys)
  5. Structure and function in body systems (nervous, digestive, skeletal, urinary)
    6. Comparative anatomy (mammals, amphibians, humans)
  6. Advances in medicine [CR4C] & [CR5]

 

Activities

 

  1. Exploring the Nervous System[CR 6]
    2. Exploration of the Immune System – Study of Vaccines [CR4d]
    3.  Review Cellular Respiration Lab [CR4a]
    4.  Comparing rat, horse and human skeletons
  2. Animal Behavior Lab with Pill bugs [CR 6]

 

 

 

Unit 8:  Ecology and Bioethics [CR 2] ~ 4 weeks

Big Ideas:  1,2,3,4

Readings:  Chapters 52 - 56, selected articles chosen by students

 

Enduring Understandings

 

  1. A Change in the genetic makeup of a population over time is evolution.
  2. C Life continues to evolve within a changing environment.
  3. A Growth, reproduction and maintenance of the organization of living systems require free energy and matter.
  4. C Organisms use feedback mechanisms to regulate growth, reproduction and dynamic homeostasis.
  5. D Growth and dynamic homeostasis of a biological system are influenced by changes in the system’s environment.
  6. E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.
  7. E Transmission of information results in changes within and between biological systems.
  8. A Interactions within biological systems lead to complex properties.

4.B Competition and cooperation are important aspects of biological systems.

4.C Naturally occurring diversity among and between components within biological systems affects interactions with the environment

 

Unit 8 Overview of Lecture and Discussion Topics

 

  1. Populations and Communities
    2. Population growth models
    3.  Biodiversity and Sustainability
    4.  Biomes and Ecosystems
    5.  Energy flow and chemical cycling
    6.  Primary productivity

Activities

  1. Biome Project - student presents a biome, discussing its characteristics and challenges [ CR 5 ]
     -  also ties Big Idea 4 to Big idea 2, [CR3B] and [CR3D]
  2. Student lead discussions on environmental topics , student share relevant articles and lead class discussions [CR5]
  3. Meet the Trees - students collect information about trees, post to Project Noah [ CR5 ]
  4. Dissolved Oxygen and Primary Productivity Lab [ CR 6 ]
    5.  Human Demography Study calculating birth and death rates [ CR4d]
  5. Animal Behavior Lab [ CR 6 ]
    7. Dandelion Populations Lab - outdoor survey and mathematical analysis
    *Learning Objective 4.19  The student is able to use data analysis to refine observations and measurements regarding the effect of population interactions on patterns of species distribution and abundance.


Laboratory Experiences and Scientific Practices: The 13 laboratory investigations support the AP Biology course. These laboratory investigations help students gain enduring understandings of biological concepts and the scientific evidence that supports them.

 

Science Practices Matrix for Major Labs

 

 

SP 1

Use representations and models

SP 2

 

Use mathematics

SP 3

 

Engage in scientific questioning

SP 4

 

Plan and implement data collection strategies

SP 5

 

Perform data analysis and evaluation of evidence

SP 6

 

Work with scientific explanations / theories

SP 7

 

Connect and relate knowledge

Investigation 1: Artificial Selection

 

X

X

X

X

X

X

Investigation 2: Mathematical Modeling: Hardy-Weinberg

 

 

X

X

X

X

X

BLAST Lab: Comparing DNA sequences to understand evolutionary relationships

X

X

X

X

X

X

X

Osmosis and Diffusion

 

X

X

X

X

X

X

Photosynthesis

 

X

X

X

X

X

X

Cellular Respiration

X

X

X

X

X

X

X

Cell Division: Mitosis & Meiosis

X

X

X

 

 

 

X

Transformation Lab

X

X

X

X

X

X

X

Biotechnology: Gel Electrophoresis

X

 

X

X

X

X

X

Energy Dynamics

X

X

X

X

X

X

X

Transpiration

X

X

X

 

X

X

X

Animal Behavior

X

X

X

X

X

X

X

Enzyme Activity

X

X

X

X

X

X

X

 

Course Summary:

Date Details Due